Regularization in deformable registration of biomedical images based on divergence and curl operators.
نویسندگان
چکیده
BACKGROUND Similarity measures in medical images do not uniquely determine the correspondence between two voxels in deformable image registration. Uncertainties in the final computed deformation exist, questioning the actual physiological consistency of the deformation between the two images. OBJECTIVES We developed a deformable image registration method that regularizes the deformation field in order to model a deformation with physiological properties, relying on vector calculus based operators as a regularization function. METHOD We implemented a 3D multi-resolution parametric deformable image registration, containing divergence and curl of the deformation field as regularization terms. Exploiting a BSpline model, we fit the transformation to optimize histogram-based mutual information similarity measure. In order to account for compression/expansion, we extract sink/source/circulation components as irregularities in the warped image and compensate them. The registration performance was evaluated using Jacobian determinant of the deformation field, inverse-consistency, landmark errors and residual image difference along with displacement field errors. Finally, we compare our results to a robust combination of second derivative regularization, as well as to non-regularized methods. RESULTS The implementation was tested on synthetic phantoms and clinical data, leading to increased image similarity and reduced inverse-consistency errors. The statistical analysis on clinical cases showed that regularized methods are able to achieve better image similarity than non regularized methods. Also, divergence/curl regularization improves anatomical landmark errors compared to second derivative regularization. CONCLUSION The implemented divergence/curl regularization was successfully tested, leading to promising results in comparison with competitive regularization methods. Future work is required to establish parameter tuning and reduce the computational cost.
منابع مشابه
A Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images
Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...
متن کاملRobust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملEvaluation of deformable image registration in HDR gynecological brachytherapy
Introduction: In brachytherapy, as in external radiotherapy, image-guidance plays an important role. For GYN treatments it is standard to acquire at least CT images and preferably MR images prior to each treatment and to calculate the dose of the day on each set of images. Then, the dose to the target and to the organs at risk (OAR) is calculated with worst case scenario from I...
متن کاملOptimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods of information in medicine
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2014